Vector Semantics and Embeddings

CSE354 - Spring 2020
Natural Language Processing

Tasks

- Vectors which represent words or sequences

- Dimensionality Reduction
- Recurrent Neural Network and Sequence Models

Objective

To embed: convert a token (or sequence) to a vector that represents meaning.

Objective

To embed: convert a token (or sequence) to a vector that represents meaning, or is useful to perform downstream NLP application.

Objective

$$
\text { port } \xrightarrow{\text { embed }}()
$$

Objective

$$
\text { poot } \xrightarrow{\text { embeses }}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Objective

Prefer dense vectors

- Less parameters (weights) for machine learning model.

- May generalize better implicitly.
- May capture synonyms

For deep learning, in practice, they work better. Why? Roughly, less parameters becomes increasingly important when you are learning multiple layers of weights rather than just a single layer.

Objective

Prefer dense vectors

Objective

Prefer dense vectors

Objective

To embed: convert a token (or sequence) to a vector that represents meaning.

Objective

To embed: convert a token (or sequence) to a vector that represents meaning.
Wittgenstein, 1945: "The meaning of a word is its use in the language"
Distributional hypothesis -- A word's meaning is defined by all the different contexts it appears in (i.e. how it is "distributed" in natural language).

Firth, 1957: "You shall know a word by the company it keeps"

Objective

To embed: convert a token (or sequence) to a vector that represents meaning.
Wittgenstein, 1945: "The meaning of a word is its use in the language"
Distributional hypothesis -- A word's meaning is defined by all the different contexts it appears in (i.e. how it is "distributed" in natural language).

Firth, 1957: "You shall know a word by the company it keeps"

> The nail bit the beam behind the wall.

Distributional Hypothesis

The nail bit the beam behind the wall.

Objective

$$
\text { port } \xrightarrow{\text { embed }}\left(\begin{array}{l}
0.53 \\
1.5 \\
3.21 \\
-2.3 \\
.76
\end{array}\right)
$$

Objective

port.n. 1 (a place (seaport or airport) where people and merchandise can enter or leave a country)
port.n. 2 port wine (sweet dark-red dessert wine originally from Portugal)
port.n.3, embrasure, porthole (an opening (in a wall or ship or armored vehicle) for firing through)
larboard, port.n. 4 (the left side of a ship or aircraft to someone who is aboard and facing the bow or nose)
interface, port.n. 5 ((computer science)
computer circuit consisting of the hardware and associated circuitry that links one device with another (especially a computer and a hard disk drive or other peripherals))

How?

1. One-hot representation
2. Selectors (represent context by "multi-hot" representation)
3. From PCA/Singular Value Decomposition (Know as "Latent Semantic Analysis" in some circumstances)

Tf-IDF: Term Frequency, Inverse Document Frequency,
PMI: Point-wise mutual information, ...etc...

How?

1. One-hot representation
2. Selectors (represent context by "multi-hot" representation)
3. From PCA/Singular Value Decomposition (Know as "Latent Semantic Analysis" in some circumstances)
"Neural Embeddings":
4. Word2vec
5. Fasttext
6. Glove
7. Bert

How?

1. One-hot represent
2. Selectors (represent context by "multi-hot" representation)
3. From PCA/Singular Value Decomposition (Know as "Latent Semantic Analysis" in some circumstances)

How?

1. One-hot represent
2. Selectors (represent context by "multi-hot" representation)
3. From PCA/Singular Value Decomposition (Know as "Latent Semantic Analysis" in some circumstances)
"Neural Embeddings":
4. Word2vec
5. Fasttext
6. Glove
7. Bert

How?

1. One-hot represent
2. Selectors (represent context by "multi-hot" representation)
3. From PCA/Singular Value Decomposition (Know as "Latent Semantic Analysis" in some circumstances)
"Neural Embeddings":
4. Word2vec
5. Fasttext
6. Glove
7. Bert

How?

1. One-hot represent
2. Selectors (represent context by "multi-hot" representation)
3. From PCA/Singular Value Decomposition (Know as "Latent Semantic Analysis" in some circumstances)
"Neural Embeddings":
4. Word2vec
5. Fasttext
6. Glove
7. Bert

SVD-Based Embeddings

Singular Value Decomposition...

Concept, In Matrix Form:

SVD-Based Embeddings

SVD-Based Embeddings

Dimensionality reduction

-- try to represent with only p' dimensions
$\mathrm{f} 1, \mathfrak{f} 2, \mathrm{f} 3, \mathrm{f} 4, \ldots$

Concept: Dimensionality Reduction in 3-D, 2-D, and 1-D

Data (or, at least, what we want from the data) may be accurately represented with less dimensions.

Concept: Dimensionality Reduction in 3-D, 2-D, and 1-D

Data (or, at least, what we want from the data) may be accurately represented with less dimensions.

Concept: Dimensionality Reduction

Rank: Number of linearly independent columns of A.
(i.e. columns that can't be derived from the other columns through addition).

Q: What is the rank of this matrix?

Concept: Dimensionality Reduction

Rank: Number of linearly independent columns of A.
(i.e. columns that can't be derived from the other columns through addition).

Q: What is the rank of this matrix?

A: 2. The 1st is just the sum of the second two columns
... we can represent as linear combination of 2 vectors:

$$
\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\left[\begin{array}{c}
-2 \\
-3 \\
1
\end{array}\right)
$$

SVD-Based Embeddings

Dimensionality reduction
-- try to represent with only p' dimensions
context words are features

target words are observations

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.
Found via Singular Value Decomposition:

$$
X_{[\mathrm{nxp}]}=U_{[n \times r]} D_{[\mathrm{xx}]} V_{[\mathrm{pxx}]}{ }^{\top}
$$

X: original matrix,
D: "singular values" (diagonal),

U: "left singular vectors",
V: "right singular vectors"

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.
Found via Singular Value Decomposition:

$$
X_{[n x p]}=U_{[n x r]} D_{[r \mathrm{rxr}]} V_{[p x r]}^{\top}
$$

X: original matrix,

$$
\begin{aligned}
& X_{[n \times p]}=U_{[n x} \\
& \prime \prime \text { (diagonal) }
\end{aligned}
$$

D: "singular values" (diagonal)

\approx
U: "eft singular vectors",
V: "right singular vectors"

Dimensionality Reduction - PCA - Example

$$
X_{[n \times p]}=U_{[n \times r]} D_{[\mathrm{xx]}]} V_{[p \mathrm{px}]}{ }^{\top}
$$

Word co-occurrence
counts:

$$
\begin{aligned}
&\left.\begin{array}{lllll}
\mathbf{1} & \mathbf{1} & \mathbf{1} & 0 & 0 \\
\mathbf{3} & \mathbf{3} & \mathbf{3} & 0 & 0 \\
\mathbf{4} & \mathbf{4} & \mathbf{4} & 0 & 0 \\
\mathbf{5} & \mathbf{5} & \mathbf{5} & 0 & 0 \\
0 & \mathbf{2} & 0 & \mathbf{4} & \mathbf{4} \\
0 & 0 & 0 & \mathbf{5} & \mathbf{5} \\
0 & \mathbf{1} & 0 & \mathbf{2} & \mathbf{2}
\end{array}\right]=\left[\begin{array}{llr}
\mathbf{0} .13 & 0.02 & -0.01 \\
\mathbf{0 . 4 1} & 0.07 & -0.03 \\
\mathbf{0 . 5 5} & 0.09 & -0.04 \\
\mathbf{0 . 6 8} & 0.11 & -0.05 \\
0.15 & \mathbf{- 0 . 5 9} & \mathbf{0 . 6 5} \\
0.07 & \mathbf{- 0 . 7 3} & \mathbf{- 0 . 6 7} \\
0.07 & \mathbf{- 0 . 2 9} & \mathbf{0 . 3 2}
\end{array}\right] \times\left[\begin{array}{llll}
\mathbf{1 2 . 4} & 0 & 0 \\
0 & \mathbf{9 . 5} & 0 \\
0 & 0 & \mathbf{1 . 3}
\end{array}\right] \times \mathrm{X} \\
& {\left[\begin{array}{ccccc}
\mathbf{0 . 5 6} & \mathbf{0 . 5 9} & \mathbf{0 . 5 6} & 0.09 & 0.09 \\
0.12 & -0.02 & 0.12 & \mathbf{- 0 . 6 9} & \mathbf{- 0 . 6 9} \\
0.40 & \mathbf{- 0 . 8 0} & 0.40 & 0.09 & 0.09
\end{array}\right] }
\end{aligned}
$$

Dimensionality Reduction - PCA - Example

$$
X_{[n x p]} \cong U_{[n x r]} D_{[r \mathrm{rxr}]} V_{[p \mathrm{xr}]}^{\top}
$$

target co-occurence count with "hit"

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.
Found via Singular Value Decomposition:

$$
X_{[n \times p]} \cong U_{[n \times r]} D_{[\mathrm{rxx}]} V_{[\mathrm{pxx}]}^{\top}
$$

X: original matrix,
D: "singular values" (diagonal),

U: "left singular vectors",
V: "right singular vectors"

Projection (dimensionality reduced space) in 3 dimensions:

$$
\left(U_{[n \times 3]} D_{[3 \times 3]} V_{[p \times 3]}^{\top}\right)
$$

To reduce features in new dataset, A :

$$
A_{[m \times p]} V D=A_{\text {small }[m \times 3]}
$$

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.
Found via Singular Value Decomposition:

$$
X_{[n \times p]} \cong U_{[n \times r]} D_{[\mathrm{rx}][} V_{[p \times r]}{ }^{\top}
$$

X: original matrix,
D: "singular values" (diagonal),

U: "left singular vectors", V: "right singular vectors"

To check how well the original matrix can be reproduced: $Z_{\text {[nxp] }}=U D V^{\top}$, How does Z compare to original X ?

To reduce features in new dataset:

$$
A_{[m \times p]} V D=A_{\text {small }[m \times 3]}
$$

Dimensionality Reduction - PCA

To check how well the original marrix can be reproduced: $Z_{\text {[nxp] }}=U D V^{\top}$, How does Z compare to original X ?

To reduce features in new dataset:

$$
A_{[m \times p]} V D=A_{\text {small }[m \times 3]}
$$

Dimensionality Reduction - PCA

This is the objective that SVD Solves

I = Goal: Minimize the sum of reconstruction errors:

X: original mat
D: "singular vá

$$
\sum_{i=1}^{N} \sum_{j=1}^{D}\left\|x_{i j}-z_{i j}\right\|^{2}
$$

" where $\boldsymbol{x}_{i j}$ are the "old" and $\boldsymbol{z}_{i j}$ are the ar vectors", "new" coordinates

To check how well the original marrix can be reproduced: $Z_{\text {[nxp] }}=U D V^{\top}$, How does Z compare to original X ?

To reduce features in new dataset:

$$
A_{[m \times p]} V D=A_{\text {small }[m \times 3]}
$$

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.
Found via Singular Value Decomposition:

$$
\mathrm{X}_{[\mathrm{nxp}]} \cong \mathrm{U}_{[\mathrm{nxr}]} \mathrm{D}_{[\mathrm{rxr}]} \mathrm{V}_{[\mathrm{pxr}]}^{\top}
$$

U , D , and V are unique
D: always positive

How?

1. One-hot represent
2. Selectors (represent context by "multi-hot" representation)
3. From PCA/Singular Value Decomposition (Know as "Latent Semantic Analysis" in some circumstances)
"Neural Embeddings":
4. Word2vec
5. Fasttext
6. Glove
7. Bert

How?

1. One-hot represent
2. Selectors (represent context by "multi-hot" representation)
3. From PCA/Singular Value Decomposition (Know as "Latent Semantic Analysis" in some circumstances)
"Neural Embeddings":
4. Word2vec
5. Fasttext
6. Glove
7. Bert

Word2Vec

Principal: Predict missing word.

Similar to language modeling but predicting context, rather than next word.
p(context | word)

Word2Vec

Principal: Predict missing word.

Similar to language modeling but predicting context, rather than next word.

Word2Vec

Principal: Predict missing word.

Similar to language modeling but predicting context, rather than next word.

Word2Vec: Context

2 Versions of Context:

1. Continuous bag of words (CBOW): Predict word from context
2. Skip-Grams (SG): predict context words from target

Word2Vec: Context

2 Versions of Context:

1. Continuous bag of words (CBOW): Predict word from context
2. Skip-Grams (SG): predict context words from target
1.Treat the target word and a neighboring context word as positive examples.
3. Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

Word2Vec: Context

2. Skip-Grams (SG): predict context words from target
1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam bebind the wall.

Word2Vec: Context

```
x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
```

1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam bebind the wall.

Word2Vec: Context

```
x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
x = (happy, beam), y = 0
x = (think, beam), y = 0
```

1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam behind the wall.

Word2Vec: Context

p(context | word)

```
x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
x = (happy, beam), y = 0
x = (think, beam), y = 0
```

k negative example ($y=0$) for every positive. How?
\square
1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam behind the wall.

Word2Vec: Context

p(context | word)

$$
\begin{aligned}
& x=(\text { hit, beam }), y=1 \\
& x=(\text { the, beam }), y=1 \\
& x=(\text { behind, beam }), y=1 \\
& \cdots \\
& x=(\text { happy, beam }), y=0 \\
& x=(\text { think, beam }), y=0
\end{aligned}
$$

k negative example ($\mathrm{y}=0$) for every positive. How? Randomly draw from unigram distribution

$$
P(w)=\frac{\operatorname{count}(w)}{\sum_{w} \operatorname{count}(w)}
$$

1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam behind the wall.

Word2Vec: Context

p(context | word)

$x=$ (hit, beam), $\mathrm{y}=1$
$x=$ (the, beam), $y=1$
$x=($ behind, beam $), y=1$
$x=($ happy, beam $), y=0$
$x=($ think, beam $), y=0$
$x=$ (think, beam), $y=0$
k negative example ($y=0$) for every positive. How? Randomly draw from unigram distribution adjusted:
$\alpha=0.75$

$$
P_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w} \operatorname{count}(w)^{\alpha}}
$$

1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam bebind the wall.

Word2Vec: Context

$x=$ (hit, beam), $y=1$
$x=$ (the, beam), $y=1$
$x=($ behind, beam $), y=1$
$x=($ happy, beam $), y=0$
$x=($ think, beam $), y=0$
$x=$ (think, beam), $y=0$
k negative example ($\mathrm{y}=0$) for every positive. How? Randomly draw from unigram distribution adjusted:
$\alpha=0.75$

$$
P_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w} \operatorname{count}(w)^{\alpha}}
$$

1. Treat the t
2.Randomly
3.Use logistic
4.Use the we

Word2Vec: Context

```
\(x=\) (hit, beam), \(y=1\)
\(x=\) (the, beam), \(y=1\)
\(\mathrm{x}=(\) behind, beam \(), \mathrm{y}=1\)
x = (happy, beam), \(\mathrm{y}=0\)
\(x=\) (think, beam), \(y=0\)
```

single context:

$$
\mathbf{P}(\mathbf{y}=\mathbf{1} \mid \mathrm{c}, \mathrm{t})=\overline{1+e^{-t \cdot c}}
$$

1.Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam behind the wall.

Word2Vec: Context

Logistic: $\sigma(z)=1 /\left(1+e^{-z}\right)$

$$
\begin{aligned}
& x=(\text { hit, beam }), y=1 \\
& x=(\text { the, beam }), y=1 \\
& x=(\text { behind, beam }), y=1 \\
& \cdots \\
& x=(\text { happy, beam }), y=0 \\
& x=(\text { think, beam }), y=0
\end{aligned}
$$

single context:
 $$
\mathbf{P}(\mathrm{y}=\mathbf{1} \mid \mathrm{c}, \mathrm{t})=\overline{1+e^{-t \cdot c}}
$$

All Contexts

$$
\begin{aligned}
& \text { Contexts } \\
& \mathbf{P}(\mathbf{y}=\mathbf{1} \mid \mathbf{c}, \mathbf{t})=\prod_{i=1}^{n} \frac{1}{1+e^{-t \cdot c_{i}}}
\end{aligned}
$$

1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam behind the wall.

Word2Vec: Context

$$
\begin{aligned}
& x=(\text { hit, beam }), y=1 \\
& x=(\text { the, beam }), y=1 \\
& x=(\text { behind, beam }), y=1 \\
& \cdots \\
& x=(\text { happy, beam }), y=0 \\
& x=(\text { think, beam }), y=0
\end{aligned}
$$

Intuition: $\mathrm{t} \square \mathrm{c}$ is a measure of similarity:

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

But, it is not a probability! To make it one, apply logistic activation:

$$
\sigma(z)=1 /\left(1+e^{-z}\right)
$$

1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam behind the wall.

Word2Vec: Context

$$
\begin{aligned}
& x=(\text { hit, beam }), y=1 \\
& x=(\text { the, beam }), y=1 \\
& x=(\text { behind, beam }), y=1 \\
& \cdots \\
& x=(\text { happy, beam }), y=0 \\
& x=(\text { think, beam }), y=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { single context: } \\
& \qquad \mathrm{P}(\mathrm{y}=1 \mid \mathrm{c}, \mathrm{t})=\frac{1}{1+e^{-t \cdot c}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { all contexts } \\
& \qquad \mathbf{P}(\mathbf{y}=\mathbf{1} \mid \mathbf{c}, \mathrm{t})=\prod_{i=1}^{n} \frac{1}{1+e^{-t \cdot c_{i}}}
\end{aligned}
$$

Intuition: $\mathrm{t} \square \mathrm{c}$ is a measure of similarity:

$$
\mathbf{a} \cdot \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
$$

But, it is not a probability! To make it one, apply logistic activation:

$$
\sigma(z)=1 /\left(1+e^{-z}\right)
$$

1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam bebind the wall.

Word2Vec: How to Learn?

$$
\mathrm{P}(\mathrm{y}=1 \mid \mathrm{c}, \mathrm{t})
$$

1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam bebind the wall.

Word2Vec: How to Learn?

Assume 300 * |vocab| weights (parameters) for each of c and t
1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases
4.Use the weights as the embeddings

The nail bit the beam bebind the wall.

Word2Vec: How to Learn?

Assume 300 * |vocab| weights (parameters) for each of c and t Start with random vectors (or all 0s)
1.Treat the target word and a neighboring context word as positive examples.
2.Randomly sample other words in the lexicon to get negative samples
3.Use logistic regression to train a classifier to distinguish those two cases

4.Use the weights as the embeddings

The nail bit the beam bebind the wall.

Word2Vec: How to Learn?

$P(y=1 \mid c, t)$

Assume 300 * |vocab| weights (parameters) for each of c and t Start with random vectors (or all 0s)

Goal:
Maximize similarity of (c, t) in positive data ($y=1$)
Minimize similarity of $(\mathrm{c}, \mathrm{t}$) in negative data ($\mathrm{y}=0$)

The nail bit the beam bebind the wall.

Word2Vec: How to Learn?

$P(y=1 \mid c, t)$

Assume 300 * |vocab| weights (parameters) for each of c and t Start with random vectors (or all 0s)

Goal:

Maximize similarity of (c, t) in positive data $(y=1)$
Minimize similarity of $(\mathrm{c}, \mathrm{t}$) in negative data ($\mathrm{y}=0$)

$$
\sum_{(c, t)}(y) \log P(y=1 \mid c, t)+(y-1) \log P(y=0 \mid c, t)
$$

Word2Vec: How to Learn?

$P(y=1 \mid c, t)$

Assume 300 * |vocab| weights (parameters) for each of c and t Start with random vectors (or all 0s)

Goal:

Maximize similarity of (c, t) in positive data $(\mathrm{y}=1$)
Minimize similarity of (c, t) in negative data ($\mathrm{y}=0$)
$\sum_{(c, t)}(y) \log P(y=1 \mid c, t)+(y-1) \log P(y=0 \mid c, t)$

$$
1-P(y=1 \mid c, t)=\frac{e^{-t \cdot c}}{1+e^{-t \cdot c}}
$$

Word2Vec: How to Learn?

Word 2 Vec

$$
\sum_{(c, t)}(y) \log P(y=1 \mid c, t)+(y-1) \log P(y=0 \mid c, t)
$$

Word2Vec captures analogies (kind of)

Word2Vec: Quantitative Evaluations

Compare to manually annotated pairs of words: WordSim-353 (Finkelstein et al., 2002)

Compare to words in context (Huang et al., 2012)
Answer TOEFL synonym questions.

Current Trends in Embeddings

1. Contextual word embeddings (a different embedding depending on context): The nail bit the beam behind the wall. They reflected a beam off the moon.

Current Trends in Embeddings

1. Contextual word embeddings (a different embedding depending on context): The nail bit the beam behind th They reflected a beam off the m
2. Embeddings can capture changes in word meaning.

3. Embeddings capture demographic biases in data.

Current Tren

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Wer as Woman is

The nail bit the b They reflected $a b$

2. Embeddings

 changes in woramuAbe blind application of machine Abstract adam.kalaie microsoft.com in data. Such a dang of machine learning
represent text datager is facing us withg runs the risk of
natural language data as vectors whic with word embed of amplifying bi
Google Nguage processing which has bee embedding, a popula biases present
This raises articles exhibit fasks. We show the used in many popular framework to This raises concerns bechibit female/male that even wand machine learning to amplify these biase because their wide gender stereord embeddings trang and a direction in theses. Geometrically widespread use, as types to a disturb trained on be linearly sephe word embedrally, gender bias is as we describe, ofteng extent these propertisabable from embedding. Second, ben is first shown to often tends to gender stereotypes, provide a methodinition, words in theutral words are shaped by - stereotypes, such as methodology for words in the word emb are shown to

俍
3. Embeddings capture demographic biases in data.
a. Efforts to debias
b. Useful for tracking bias over time.

3. Embeddings capture demographic biases in data.
a. Efforts to debias
b. Useful for tracking bias over time.

Vector Semantics and Embeddings

Take-Aways

- Dense representation of meaning is desirable.
- Approach 1: Dimensionality reduction techniques
- Approach 2: Learning representations by trying to predict held-out words.
- Word2Vec skipgram model attempts to solve by predicting target word from context word:
maximize similarity between true pairs; minimize similarity between random pairs.
- Embeddings do in fact seem to capture meaning in applications
- Dimensionality reduction techniques just as good by some evaluations.
- Current Trends: Integrating context, Tracking changes in meaning.

