
Vector Semantics and
Embeddings

CSE354 - Spring 2020
Natural Language Processing

Tasks

● Vectors which represent words
or sequences

● Dimensionality Reduction
● Recurrent Neural Network and

Sequence Models
how?

Objective

To embed: convert a token (or sequence) to a vector that represents meaning.

Objective

To embed: convert a token (or sequence) to a vector that represents meaning, or
is useful to perform downstream NLP application.

Objective

port
embed

Objective

port
embed

0
…
0
1
…
0

Objective

port
embed

0
…
0
1
…
0

Prefer dense vectors
● Less parameters (weights) for

machine learning model.
● May generalize better implicitly.
● May capture synonyms

For deep learning, in practice, they work
better. Why? Roughly, less parameters
becomes increasingly important when you are
learning multiple layers of weights rather than
just a single layer.

one-hot is sparse vector

Objective

port
embed

0
…
0
1
…
0

Prefer dense vectors
● Less parameters (weights) for

machine learning model.
● May generalize better implicitly.
● May capture synonyms

For deep learning, in practice, they work
better. Why? Roughly, less parameters
becomes increasingly important when you are
learning multiple layers of weights rather than
just a single layer.

one-hot is sparse vector

(Jurafsky, 2012)

Objective

port
embed

0
…
0
1
…
0

Prefer dense vectors
● Less parameters (weights) for

machine learning model.
● May generalize better implicitly.
● May capture synonyms

For deep learning, in practice, they work
better. Why? Roughly, less parameters
becomes increasingly important when you are
learning multiple layers of weights rather than
just a single layer.

one-hot is sparse vector

(Jurafsky, 2012)

10
2

18
10

0 5 10 15 20

10

5

0

3
9

Objective

To embed: convert a token (or sequence) to a vector that represents meaning.

Objective

To embed: convert a token (or sequence) to a vector that represents meaning.

Wittgenstein, 1945: “The meaning of a word is its use in the language”

Distributional hypothesis -- A word’s meaning is defined by all the different
contexts it appears in (i.e. how it is “distributed” in natural language).

Firth, 1957: “You shall know a word by the company it keeps”

Objective

To embed: convert a token (or sequence) to a vector that represents meaning.

Wittgenstein, 1945: “The meaning of a word is its use in the language”

Distributional hypothesis -- A word’s meaning is defined by all the different
contexts it appears in (i.e. how it is “distributed” in natural language).

Firth, 1957: “You shall know a word by the company it keeps”

The nail hit the beam behind the wall.

Distributional Hypothesis

The nail hit the beam behind the wall.

Objective

port
embed

0.53
1.5
3.21
-2.3
.76

Objective

port
embed

0.53
1.5
3.21
-2.3
.76

port.n.1 (a place (seaport or airport) where
people and merchandise can enter or leave a
country)
port.n.2 port wine (sweet dark-red dessert wine
originally from Portugal)
port.n.3, embrasure, porthole (an opening (in a
wall or ship or armored vehicle) for firing
through)
larboard, port.n.4 (the left side of a ship or
aircraft to someone who is aboard and facing
the bow or nose)
interface, port.n.5 ((computer science)
computer circuit consisting of the hardware and
associated circuitry that links one device with
another (especially a computer and a hard disk
drive or other peripherals))

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=port+wine
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=embrasure
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=porthole
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=larboard
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=interface

How?

1. One-hot representation
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

Tf-IDF: Term Frequency, Inverse Document Frequency,

PMI: Point-wise mutual information, ...etc…

How?

1. One-hot representation
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

“Neural Embeddings”:

4. Word2vec
5. Fasttext
6. Glove
7. Bert

How?

1. One-hot represent
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

“Neural Embeddings”:

4. Word2vec
5. Fasttext
6. Glove
7. Bert

…, word1, word2, bill, word3, word4, ... 0
1
0
0
0
1
0
0
0
...

How?

1. One-hot represent
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

“Neural Embeddings”:

4. Word2vec
5. Fasttext
6. Glove
7. Bert

How?

1. One-hot represent
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

“Neural Embeddings”:

4. Word2vec
5. Fasttext
6. Glove
7. Bert

How?

1. One-hot represent
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

“Neural Embeddings”:

4. Word2vec
5. Fasttext
6. Glove
7. Bert

SVD-Based Embeddings

Singular Value Decomposition...

Concept, In Matrix Form:

f1, f2, f3, f4, … fp

o1
o2
o3
…

on

columns:
p features

rows:
n observations

f1, f2, f3, f4, … fp

o1
o2
o3
…

on

SVD-Based Embeddings

f1, f2, f3, f4, … fp

o1
o2
o3
…

on

c1, c2, c3, c4, … cp’

o1
o2
o3
…

on

Dimensionality reduction
 -- try to represent with only p’ dimensionsSVD-Based Embeddings

Concept: Dimensionality Reduction in 3-D, 2-D, and 1-D

Data (or, at least, what we want from the data) may be accurately
represented with less dimensions.

P = 2
P’ = 1

Concept: Dimensionality Reduction in 3-D, 2-D, and 1-D

Data (or, at least, what we want from the data) may be accurately
represented with less dimensions.

P = 2
P’ = 1

P = 3
P’ = 2

Rank: Number of linearly independent columns of A.
(i.e. columns that can’t be derived from the other columns through addition).

Q: What is the rank of this matrix? 1 -2 3

2 -3 5

1 1 0

Concept: Dimensionality Reduction

Rank: Number of linearly independent columns of A.
(i.e. columns that can’t be derived from the other columns through addition).

Q: What is the rank of this matrix?

A: 2. The 1st is just the sum of the second two columns

… we can represent as linear combination of 2 vectors:

1 -2 3

2 -3 5

1 1 0

1 -2

2 -3

1 1

Concept: Dimensionality Reduction

f1, f2, f3, f4, … fp

o1
o2
o3
…

on

context words are features

target words are
observations

co-occurence counts
are cells.

c1, c2, c3, c4, … cp’

o1
o2
o3
…

on

Dimensionality reduction
 -- try to represent with only p’ dimensionsSVD-Based Embeddings

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

X ≈ nn

p p

Dimensionality Reduction - PCA - Example

X[nxp] = U[nxr] D[rxr] V[pxr]
T

Word co-occurrence
counts:

Dimensionality Reduction - PCA - Example

X[nxp] ≅ U[nxr] D[rxr] V[pxr]
T

target co-occurence count with “hit”

target
co-occ
count with
“nail” Observation: “beam.”

 count(beam, hit) = 100 -- horizontal dimension
 count(beam, nail) = 80 -- vertical dimension

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] ≅ U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

Projection (dimensionality reduced space) in 3 dimensions:
(U[nx3] D[3x3] V[px3]

T)

To reduce features in new dataset, A:
A[m x p] VD = Asmall[m x 3]

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] ≅ U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

To check how well the original matrix can be reproduced:
Z[nxp] = U D VT , How does Z compare to original X?

To reduce features in new dataset:
A[m x p] VD = Asmall[m x 3]

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] ≅U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

To check how well the original matrix can be reproduced:
Z[nxp] = U D VT , How does Z compare to original X?

To reduce features in new dataset:
A[m x p] VD = Asmall[m x 3]

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] ≅U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”,
D: “singular values” (diagonal), V: “right singular vectors”

To check how well the original matrix can be reproduced:
Z[nxp] = U D VT , How does Z compare to original X?

To reduce features in new dataset:
A[m x p] VD = Asmall[m x 3]

This is the objective
that SVD Solves

Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] ≅ U[nxr] D[rxr] V[pxr]
T

U, D, and V are unique

D: always positive

(TechnoWiki)

How?

1. One-hot represent
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

“Neural Embeddings”:

4. Word2vec
5. Fasttext
6. Glove
7. Bert

How?

1. One-hot represent
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

“Neural Embeddings”:

4. Word2vec
5. Fasttext
6. Glove
7. Bert

Word2Vec

Principal: Predict missing word.

Similar to language modeling but predicting context, rather than next word.

p(context | word)

Word2Vec

Principal: Predict missing word.

Similar to language modeling but predicting context, rather than next word.

p(context | word)

To learn, maximize

Word2Vec

Principal: Predict missing word.

Similar to language modeling but predicting context, rather than next word.

p(context | word)

J = 1 - p(context | word)

To learn, maximize.
In practice, minimize

Word2Vec: Context p(context | word)

2 Versions of Context:
1. Continuous bag of words (CBOW): Predict word from context
2. Skip-Grams (SG): predict context words from target

Word2Vec: Context p(context | word)

2 Versions of Context:
1. Continuous bag of words (CBOW): Predict word from context
2. Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

Word2Vec: Context p(context | word)

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

2 Versions of Context:
1. Continuous bag of words (CBOW): Predict word from context
2. Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

Word2Vec: Context p(context | word)

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
...

Word2Vec: Context p(context | word)

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

Word2Vec: Context p(context | word)

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

k negative example (y=0) for every positive.
How?

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

Word2Vec: Context p(context | word)

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

k negative example (y=0) for every positive.
How? Randomly draw from unigram distribution

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

Word2Vec: Context p(context | word)

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

k negative example (y=0) for every positive.
How? Randomly draw from unigram distribution
adjusted:

α = 0.75

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

Word2Vec: Context p(context | word)

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

k negative example (y=0) for every positive.
How? Randomly draw from unigram distribution
adjusted:

α = 0.75

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

Word2Vec: Context

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

single context:
P(y=1| c, t) =

Word2Vec: Context

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

single context:
P(y=1| c, t) =

All Contexts
P(y=1| c, t) =

Logistic: 𝜎(z) = 1 / (1 + e-z)

Word2Vec: Context

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

single context:
P(y=1| c, t) =

Intuition: tᐧc is a
measure of similarity:

But, it is not a
probability! To make it
one, apply logistic
activation:
 𝜎(z) = 1 / (1 + e-z)

Word2Vec: Context

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

x = (hit, beam), y = 1
x = (the, beam), y = 1
x = (behind, beam), y = 1
…
x = (happy, beam), y = 0
x = (think, beam), y = 0
...

single context:
P(y=1| c, t) =

all contexts
P(y=1| c, t) =

Intuition: tᐧc is a
measure of similarity:

But, it is not a
probability! To make it
one, apply logistic
activation:
 𝜎(z) = 1 / (1 + e-z)

Word2Vec: How to Learn?

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

P(y=1| c, t)

Word2Vec: How to Learn?

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

P(y=1| c, t)

Assume 300 * |vocab| weights (parameters) for each of c and t

Word2Vec: How to Learn?

2 Versions of Context:
● Continuous bag of words (CBOW): Predict word from context
● Skip-Grams (SG): predict context words from target

1.

2.

3.

4.

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

P(y=1| c, t)

Assume 300 * |vocab| weights (parameters) for each of c and t
Start with random vectors (or all 0s)

Word2Vec: How to Learn?

(Jurafsky, 2017)

The nail hit the beam behind the wall.

c1 c2 c3 c4

P(y=1| c, t)

Assume 300 * |vocab| weights (parameters) for each of c and t
Start with random vectors (or all 0s)

Goal:
Maximize similarity of (c, t) in positive data (y = 1)
Minimize similarity of (c, t) in negative data (y = 0)

Word2Vec: How to Learn?

P(y=1| c, t)

Assume 300 * |vocab| weights (parameters) for each of c and t
Start with random vectors (or all 0s)

Goal:
Maximize similarity of (c, t) in positive data (y = 1)
Minimize similarity of (c, t) in negative data (y = 0)

Word2Vec: How to Learn?

P(y=1| c, t)

Assume 300 * |vocab| weights (parameters) for each of c and t
Start with random vectors (or all 0s)

Goal:
Maximize similarity of (c, t) in positive data (y = 1)
Minimize similarity of (c, t) in negative data (y = 0)

Word2Vec: How to Learn?

P(y=1| c, t)

Assume 300 * |vocab| weights (parameters) for each of c and t
Start with random vectors (or all 0s)

Goal:
Maximize similarity of (c, t) in positive data (y = 1)
Minimize similarity of (c, t) in negative data (y = 0)

Optimized using gradient
descent type methods.

Word 2 Vec

(Jurafsky, 2017)

Word2Vec captures analogies (kind of)

(Jurafsky, 2017)(Jurafsky, 2017)

(Jurafsky, 2017)

(Jurafsky, 2017)(Jurafsky, 2017)

Word2Vec: Quantitative Evaluations

Compare to manually annotated pairs of words: WordSim-353 (Finkelstein et al.,
2002)

Compare to words in context (Huang et al., 2012)

Answer TOEFL synonym questions.

https://aclweb.org/aclwiki/TOEFL_Synonym_Questions_(State_of_the_art)

Current Trends in Embeddings

1. Contextual word embeddings (a different embedding depending on context):
The nail hit the beam behind the wall.
They reflected a beam off the moon.

Current Trends in Embeddings

1. Contextual word embeddings (a different embedding depending on context):
The nail hit the beam behind the wall.
They reflected a beam off the moon.

2. Embeddings can capture
changes in word meaning.

(Kulkarni et al.,2015)

Current Trends in Embeddings

1. Contextual word embeddings (a different embedding depending on context):
The nail hit the beam behind the wall.
They reflected a beam off the moon.

2. Embeddings can capture
changes in word meaning.

3. Embeddings capture demographic biases in data.

(Garg et al., 2018)

Current Trends in Embeddings

1. Contextual word embeddings (a different embedding depending on context):
The nail hit the beam behind the wall.
They reflected a beam off the moon.

2. Embeddings can capture
changes in word meaning.

3. Embeddings capture demographic biases in data.
a. Efforts to debias
b. Useful for tracking bias over time. (Garg et al., 2018)

Current Trends in Embeddings

1. Contextual word embeddings (a different embedding depending on context):
The nail hit the beam behind the wall.
They reflected a beam off the moon.

2. Embeddings can capture
changes in word meaning.

3. Embeddings capture demographic biases in data.
a. Efforts to debias
b. Useful for tracking bias over time. (Garg et al., 2018)

Vector Semantics and Embeddings

Take-Aways

● Dense representation of meaning is desirable.
● Approach 1: Dimensionality reduction techniques
● Approach 2: Learning representations by trying to predict held-out words.
● Word2Vec skipgram model attempts to solve by predicting target word from

context word:
maximize similarity between true pairs; minimize similarity between random
pairs.

● Embeddings do in fact seem to capture meaning in applications
● Dimensionality reduction techniques just as good by some evaluations.
● Current Trends: Integrating context, Tracking changes in meaning.

