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Tasks

● Vectors which represent words 
or sequences

● Dimensionality Reduction
● Recurrent Neural Network and 

Sequence Models
how?
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The nail hit the beam behind the wall.



Distributional Hypothesis

The nail hit the beam behind the wall.
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port.n.1 (a place (seaport or airport) where 
people and merchandise can enter or leave a 
country)
port.n.2 port wine (sweet dark-red dessert wine 
originally from Portugal)
port.n.3, embrasure, porthole (an opening (in a 
wall or ship or armored vehicle) for firing 
through)
larboard, port.n.4 (the left side of a ship or 
aircraft to someone who is aboard and facing 
the bow or nose)
interface, port.n.5 ((computer science) 
computer circuit consisting of the hardware and 
associated circuitry that links one device with 
another (especially a computer and a hard disk 
drive or other peripherals))

http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=port+wine
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=embrasure
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=porthole
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=larboard
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=interface


How?

1. One-hot representation 
2. Selectors (represent context by “multi-hot” representation)
3. From PCA/Singular Value Decomposition

(Know as “Latent Semantic Analysis” in some circumstances)

Tf-IDF: Term Frequency, Inverse Document Frequency, 

PMI: Point-wise mutual information, ...etc… 
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SVD-Based Embeddings

Singular Value Decomposition...



Concept, In Matrix Form:
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Rank: Number of linearly independent columns of A. 
(i.e. columns that can’t be derived from the other columns through addition).

Q: What is the rank of this matrix? 1 -2 3

2 -3 5

1 1 0

Concept: Dimensionality Reduction



Rank: Number of linearly independent columns of A. 
(i.e. columns that can’t be derived from the other columns through addition).

Q: What is the rank of this matrix?

A: 2.   The 1st is just the sum of the second two columns

…  we can represent as linear combination of 2 vectors:

1 -2 3

2 -3 5

1 1 0

1 -2

2 -3

1 1

Concept: Dimensionality Reduction



f1, f2, f3, f4, …                                                     fp

o1
o2
o3
…

on

context words are features

target words are 
observations

co-occurence counts 
are cells. 

c1, c2, c3, c4, …              cp’
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Dimensionality reduction
 -- try to represent with only p’ dimensionsSVD-Based Embeddings



Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”
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Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”

X ≈ nn

p p



Dimensionality Reduction - PCA - Example

X[nxp] = U[nxr] D[rxr] V[pxr]
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Word co-occurrence 
counts: 



Dimensionality Reduction - PCA - Example

X[nxp] ≅ U[nxr] D[rxr] V[pxr]
T

target co-occurence count with “hit”

target
co-occ 
count with 
“nail” Observation: “beam.”

  count(beam, hit) = 100 -- horizontal dimension
  count(beam, nail) = 80 -- vertical dimension
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(U[nx3] D[3x3] V[px3]
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To reduce features in new dataset, A: 
A[ m x p ] VD = Asmall[ m x 3 ]
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Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] ≅ U[nxr] D[rxr] V[pxr]
T

U, D, and V are unique

D: always positive



(TechnoWiki)
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Word2Vec

Principal: Predict missing word. 

Similar to language modeling but predicting context, rather than next word.

p(context | word) 

J = 1 - p(context | word) 

To learn, maximize.
In practice, minimize
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Word2Vec: How to Learn? 

P(y=1| c, t)

Assume 300 * |vocab| weights (parameters) for each of c and t
Start with random vectors (or all 0s)

Goal: 
Maximize similarity of (c, t) in positive data (y = 1)
Minimize similarity of (c, t) in negative data (y = 0)

Optimized using gradient 
descent type methods. 



Word 2 Vec

(Jurafsky, 2017)



Word2Vec captures analogies (kind of)

(Jurafsky, 2017)(Jurafsky, 2017)
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Word2Vec: Quantitative Evaluations

Compare to manually annotated pairs of words: WordSim-353 (Finkelstein et al., 
2002)

Compare to words in context (Huang et al., 2012)

Answer TOEFL synonym questions. 

https://aclweb.org/aclwiki/TOEFL_Synonym_Questions_(State_of_the_art)
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Vector Semantics and Embeddings

Take-Aways

● Dense representation of meaning is desirable.
● Approach 1: Dimensionality reduction techniques
● Approach 2: Learning representations by trying to predict held-out words. 
● Word2Vec skipgram model attempts to solve by predicting target word from 

context word: 
maximize similarity between true pairs; minimize similarity between random 
pairs. 

● Embeddings do in fact seem to capture meaning in applications
● Dimensionality reduction techniques just as good by some evaluations.
● Current Trends: Integrating context, Tracking changes in meaning. 


